

RTC_RobotMotion_Manual 概要

発行日 2017 年 3 月 27 日 公立大学法人会津大学 株式会社アイザック

目次

1	RTC 概要	
2	2 開発環境	
3	3 ビルド・実行方法	
4	4 RTC 説明	
5	5 操作説明	
	5.1 メインクローラ	
	5.2 サブクローラ	
	5.3 アーム	11
6	3 連絡先	

1 RTC 概要

E2 クローラを操作するための RTC であり、Linux(Ubuntu14.04) 上でのみ動作。 制御対象である E2 クローラを Fig. 1 に示す。E2 はメインクローラ 2 つサブクロー ラ 4 つを有する小型クローラロボットである。 3 つのマイコンで各クローラのモータ 6 つを制御する。また、Kinova 社製のロボットアーム Jaco2 を搭載している。

本 RTC はコントローラの操作状態から機体の速度指令や、モータの PWM 指令値、 アーム手先位置姿勢の変異分を生成する RTC である。RTC_GameController、 RTC_E2Crowler、RTC_Jaco2_Arm との接続を想定している。

E2 クローラをベースに開発を進めたため、他のロボットでの検証は行っていない。

Fig. 1 E2 外観

2 開発環境

OS: Ubuntu14.04 RTM: OpenRTM-aist C++ 1.1.0

3 ビルド・実行方法

*ビルド方法

・ 任 意 の 場 所 に RTC_RobotMotion_Manual フ ォ ル ダ を 置 き 、 RTC_RobotMotion_Manual にはいる

\$ cd RTC_RobotMotion_Manual

・build フォルダを作成、build にはいる

\$ mkdir build && cd build

・cmake 実行後に make を実行

\$ cmake ../

\$ make

・build フォルダ内の src フォルダに実行ファイル RTC_Robot Motion_ManualComp が作成される。

*実行方法

- ・以下手順で端末から実行
- ・RTC_RobotMotion_ManualComp がある場所にはいる \$ cd RTC_RobotMotion_Manual/build/src
- ・RTC_RobotMotion_ManualComp 実行
- $\ ./RTC_RobotMotion_ManualComp$
- ・または src フォルダ内の RTC_RobotMotion_ManualComp をダブルクリック

4 RTC 説明

RTC_RobotMotion_Manual を Fig.1 に、入力ポートを Table1 に示す。

1つ目の入力である Controller_Type は接続されたデバイス名を取得するものであり、プログラム内で接続されたコントローラが何であるか判断するために使用している。

2つ目の入力である Button はゲームコントローラのボタン押下状態を TimedULong 型で入力する。

3 つ目の入力である Analog はゲームコントローラのスティックや一部のボタンから 取得したアナログ情報を TimedDoubleSeq 型で入力する。

これらの入力ポートは RTC_GameController(Linux 版/Win 版)、RTC_Jaco2_Arm, RTC_E2Crowlerの接続を想定している。これらの RTC と接続した際の操作説明を第 5 項で行う。

Fig. 2 RTC_RobotMotion_Manual Component

名称	データ型	概要
Controller_Type	TimedString	接続デバイス名
Button	TimedULong	ボタン押下状態
Analog	TimedDoubleSeq	アナログ情報

Table 1 In Port List

本 RTC の出力ポートを Table 2 に示す。以下の出力はすべて入力ポートの状態によって生成される。

1つ目の出力である Velocity はメインクローラの速度指令値となっている。

2 つ目の出力である Sub_CrawlerAngle はサブクローラの角度指令値であり、後述の Mode に指令値実行のためのフラグが含まれる。

3 つ目の出力である Mode は E2 の動作モードを決定する。Table2 に Mode の内容 を示す。

4 つ目の出力である MOT_Main はメインクローラの PWM 指令値であり-90~90 の 範囲で出力される。単位は[%]である。

5 つ目の出力である MOT_Sub はメインクローラの PWM 指令値であり-90、90、10 のいずれかが出力される。単位は[%]である。データ配列 0 番から、機体前方左サブク ローラ、機体前方右サブクローラ、機体後方左サブクローラ、機体後方右サブクローラ の順で各モータ指令 PWM 値を格納する。

6つ目の出力である Arm_delta_Pose はアームの手先位置姿勢変位分を出力する。

7 つ目の出力である Finger_Mode はアームの指先の開閉とアーム手先のホームポジ ションへの移動フラグを出力する。データ配列 0~3 番が各指先の開閉指示を与える箇 所となっており、4 番がホームポジションフラグとなっている。

8 つ目の出力である Scan_Mode は機体に搭載したスキャン装置(レーザレンジファ インダ等)の RTC に対して指令を送ることを想定して機能追加を予定。

現状ボタン番号13番が押されていた場合のみ配列0番で1を出力する。

概要	範囲	
操作モード	0,1	
最大速度(9段階)	0~8	
強制最大速度フラグ	0,1	
サブ目標角移動	0,1,2	
台車乗り降り補助	0,1,2	
走行/アームモード切替	0,1	
Sub 選択状況		
SubUPDOWN	-1,0,1	
	概要 操作モード 最大速度 (9 段階) 強制最大速度フラグ サブ目標角移動 台車乗り降り補助 走行/アームモード切替 Sub 選択状況 SubUPDOWN	

Table 2 Mode

名称	データ型	概要
Velocity	TimedVelocity2D	メインクローラ速度指令
		[m/s]
Sub_CrawlerAngle	TimedDoubleSeq	サブクローラ目標角度
		[rad/s]
Mode	TimedLongSeq	操作モード
MOT_Main	TimedLongSeq	メインクローラ PWM 指
		令
MOT_Sub	TimedLongSeq	サブクローラ PWM 指令
Arm_delta_Pose	TimedPose3D	手先位置姿勢変位分
Finger_Mode	TimedLongSeq	指先開閉
		ホームポジション指令
Seen Mode	TimedLongSeq	レーザレンジファインダー等スキ
Scan_Mode		ャンモード (予備)

5 操作説明

Fig. 3 のように各 RTC を接続した際の操作方法をに示す。メインクローラの操作は 操作モードが走行モード時のみ、アームの操作はアームモード時のみ可能である。操作 モードはタッチパッドボタンを押すことで、走行モードとアームモードとを切り替え 可能である。

5.1 メインクローラ

機体の操作方法は左スティックで左右のメインクローラを操作する Type-A と、左右スティックの傾き具合により左右メインクローラを操作する Type-B の2パターンある。

○ボタンを押すことで最大速度の設定値が切り替わる。デフォルトでは走行可能な最大速度の20%が上限となっている。○ボタンを押すたびに、30%、40%と10%刻みで上限が変化する。設定値が100%となった時に○ボタンを押すと設定値が20%に戻る。スティックの出力割合は設定最大速度の出力割合となる。設定値20%時にスティックを前方に最大まで傾けた際に最大速度の20%で走行する。半分程度の傾きであれば最大速度の10%で走行する。L3ボタン(左スティックの押し込み)を押すことで走行可能な最大速度で走行する(設定値を無視し最大出力で走行する)。□ボタンを押すことで操作方法がType-AからType-Bへ切り替わる。もう1度押すことでType-Aの操作方法に戻る。操作方法をまとめたものをFig.4に示す。

Fig. 3 手動操作 RTC 接続図

Fig.4 メインクローラ操作方法

5.2 サブクローラ

サブクローラの操作方法を Fig. 5 に示す。サブクローラの操作も操作モード が走行モードのときのみ可能である

L1、L2、R1、R2ボタンと△、×ボタンの組み合わせで操作する。L1、L2、 R1、R2ボタンには対応するサブクローラが割り当てられている。動かしたい サブクローラに対応したボタンを押しながら、機体内側に回転させたい場合は △ボタン、機体外側に回転させたい場合は×ボタンを押すことで動作する。例 えば機体前方左クローラと機体後方右クローラを機体外側に回転させたい場合 は、L1,R2ボタンを押しながら×ボタンを押せばよい。なおメインクローラ走 行中でもサブクローラ操作可能である。

Fig.5 サブローラ操作方法

5.3 アーム

アームの座標系を Fig.6 に示す。手先座標は Fig. 6 (c)に示すように、手首(6 軸目)から 180mm 離れた位置に存在する。手先姿勢(Roll・Pitch・Yaw)はこの座標を中心に回転する。

アーム手先位置(X,Y,Z)の操作には左スティックと R2,L2 ボタンを使用する。 左スティックを前に倒すことで、Y 軸-方向へアーム手先が移動し、後ろに倒す ことで Y 軸+方向に手先が移動する。また、左スティックを左に倒すことで X 軸 +方向へアーム手先が移動し、右に倒すことで X 軸-方向に手先が移動する。Z 軸方向の操作には R2,L2 ボタンを使用する。R2 ボタンの押し込みで Z 軸+方向 へ、L2 ボタン Z 軸-方向に手先が移動する。

アーム手先姿勢(Roll,Pitch,Yaw)の操作には右スティックと R1,L1 ボタンを使用する。

右スティックを前に倒すことで、Roll+方向へ、後ろに倒すことで Roll-方向 に手先姿勢が変化する。また、左スティックを左に倒すことで Pitch+方向へ、 右に倒すことで Pitch-方向に手先姿勢が変化する。R1 ボタンの押し込みで Yaw +方向へ、L1 ボタン Yaw-方向に手先姿勢が変化する。

アーム指先の開閉を操作する際は、方向キーを用いる。各キーを押している間 指の開閉動作が続く。方向キー上で3本指が閉じ、下で3本指が開く。また、方 向キー右で2本指が閉じ、方向キー左で2本指が開く。

また、アームモード時に SHARE ボタンを押すことで、手先がホームポジシ ョンへ移動する。

操作方法をまとめたものを Fig. 7 に示す。

(c) 手先 Fig.6 アーム座標系

手先動作	PS4コントローラ操作
x軸	左スティック左右
y軸	左スティック前後
z軸	L2,R2ボタン
Roll	右スティック前後
Pitch	右スティック左右
Yaw	L1,R1ボタン
2本指	方向キー →:開 ←:閉
3本指	方向キー ↑:開 ↓:閉
ホームポジション	SHAREボタン

Fig. 7 アーム操作方法

6 連絡先

株式会社アイザック http://www.aizuk.jp/ 所在地:〒965-0033 福島県会津若松市行仁町 9-28 TEL:0242-85-8590 FAX:0242-85-8591 本文書の著作権は公立大学法人 会津大学に帰属します。 この文書のライセンスは以下の通りです。 <u>https://creativecommons.org/licenses/by/2.1/jp/</u>

改版履歴

Ver	改定日	内容
0.0	2017/3/27	新規作成