

機能仕様書 ServoMotorControl

Ver1.0.0

発行日 2018年08月21日 公立大学法人会津大学 株式会社 FSK

目次

1.	はじ	こめに	L
	1.1.	開発環境	L
	1.2.	使用機器	L
2.	RTO	C構成、静的事項	5
	2.1.	モジュール名	5
	2.2.	機能概要	5
	2.3.	コンポーネント図	5
	2.4.	ポート情報	5
	2.5.	コンフィギュレーション情報	3
3.	RTO	C 振る舞い、動的事項	7
	3.1.	アルゴリズム	7
	3.1.	1. onActive	7
	3.1.	2. on Excute	7
	3.1.	3. onDeactive	7

1. はじめに

1.1. 開発環境

言語・環境		バージョン	補足
OS	Raspbian	Raspbian(Jissei)	-
開発言語	Python	2.7.10	-
RTミドルウェア	OpenRTM-aist-Python	1.1.2	-
ライブラリー	smbus	-	-

1.2. 使用機器

名称	補足
Raspberry Pi	Raspberry Pi 2、Raspberry Pi 3 どちらでも大丈夫
	です。
FaBo #605	使用するサーボモータドライバーは PCA9685 で
	す。
ロボットアーム:	使用しているサーボモータは MG995 と MG945
サインスマート 3 軸 パレタイジングロボット ロ	を想定しています。
ボットアーム キット For Arduino UNO	
MEGA250 電子自作	

1.2.1. PCA9685

https://www.nxp.com/docs/en/data-sheet/PCA9685.pdf

必要情報

	値	説明
デバイスアドレス	0x40	PCA9865 のデバイスアドレス。I2C で通信時に
		使用。
分解能	4096	分解能とは何 step けられるかということです。
		ここでは周期を 4096step にわけられるというこ
		とになります。
osc clock	25MHz	処理能力
プリスケール値	osc clock	プリスケール値の求め方
	$=$ Round($\frac{1}{4096 * update rate} - 1$)	PWM 周波数を設定するための値
		updata rateはサーボモータのPWM 周期になり
		ます。

1.2.2. ロボットアーム

・MG995 メタル ギア デジタル ハイトルク サーボ

http://www.towerpro.com.tw/product/mg995/

http://www.electronicoscaldas.com/datasheet/MG995_Tower-Pro.pdf

性能

サイズ	40.7 x 19.7 x 42.9 ミリメートル
角度	180度
トルク	9.4 キロ/ センチメートル (4.8V)
速度	$0.20/60^{\circ}$ (4.8V)
PWM 周期	20 ms(50 Hz)
デューティーサイクル	記載なし

・MG945 メタル ギア デジタル ハイトルク サーボ

http://www.towerpro.com.tw/product/mg945/

性能

サイズ	40.7 x 19.7 x 42.9 ミリメートル
角度	120度
トルク	12 キロ/ センチメートル (4.8V)
速度	$0.23/60^{\circ}$ (4.8V)
PWM 周期	記載なし
デューティーサイクル	記載なし

・必要情報

	値		説明
PWM 周期	50 Hz		ON の時間と OFF の時間の周期
			今回は MG995 の 50Hz を使用します。
デューティーサ	0.5	\sim	電圧をかけている時間。電圧をかけていることが出来る時間は基
イクル	$2.4 \mathrm{ms}$		本的にサーボモータごとに決まっています。
			本来は各サーボのデータシートを参考にするのですが、記載がな
			いので今回使用サーボモータと同社のサーボモータの SG90 とこ
			ちらが手で確認した値を参考にしたいと思います。
			SG90
			 http://akizukidenshi.com/download/ds/towerpro/SG90_a.pdf

・ロボットアームの角度

サーボモータは 0~180 度まで動作しますが実際の所、ロボットアームはハード上の問題により稼働角度 は小さいです。以下に実際の角度を記載します。 グリッパー部分

• 中間部分

最大(180度)	中間(75度)	最小(35度)

・台座部分		
最大(180度)	中間(90度)	最小(0度)

2. RTC 構成、静的事項

2.1. モジュール名

 ${\bf ServoMotorControl}$

2.2. 機能概要

FaBo(#605)に接続された「サインスマート 3 軸 パレタイジングロボット ロボットアーム キット」 を動かすためのコンポーネントです。

FaBo(#605)の PWM 制御のピンにロボットアームの以下の部分を接続して使用する。

PWM 番号	差し込むサーボモータ
PWM0	グリッパー部分
PWM1	中間部分
PWM2	台座部分

ロボットアーム以外にも接続されたサーボモータを動かすことが出来ます。 角度を受け取りその角度にサーボモータを動かします。

2.3. コンポーネント図

2.4. ポート情報

A)Inport

名称	型	説明
ServoMotor1	RTC::TimedFloat	FaBo PWM0 接続のサーボモータを動か

		す値(角度)を取得。
ServoMotor2	RTC::TimedFloat	FaBo PWM1 接続のサーボモータを動か
		す値(角度)を取得。
ServoMotor3	RTC::TimedFloat	FaBo PWM2 接続のサーボモータを動か
		す値(角度)を取得。

B)OutPort

なし

2.5. コンフィギュレーション情報

名称	型	範囲	初期値	説明
ServoMotor1AngleMax	int	0<=x<=180	140	PWM0 に接続されたサーボモータの最大
				角度
ServoMotor1AngleMin	int	0<=x<=180	80	PWM0 に接続されたサーボモータの最小
				角度
ServoMotor2AngleMax	int	0<=x<=180	180	PWM1 に接続されたサーボモータの最大
				角度
ServoMotor2AngleMin	int	0<=x<=180	35	PWM1 に接続されたサーボモータの最小
				角度
ServoMotor3AngleMax	int	0<=x<=180	180	PWM2 に接続されたサーボモータの最大
				角度
ServoMotor3AngleMin	int	0<=x<=180	0	PWM2 に接続されたサーボモータの最小
				角度

2.6. 実行周期

10[Hz]

実際に使用するときは SystemEditor 上で調節してください。

- 3. RTC 振る舞い、動的事項
- 3.1. アルゴリズム
- 3.1.1. Initialize
 - 1) Smbus の初期宣言
 - 2) ServoMotor1,2,3の値を初期化
- 3.1.2. onActive
 - 1) PCA9685 を使用するための初期設定
- 3.1.3. onExcute
 - 1) InPort:ServoMotor1に値があるか確認ある場合は以下の処理をする。
 - 1. ServoMotor1の値を読み込む。
 - 2. ServoMotor1の値が ServoMotor1AngleMin 以上 ServoMotor1AngleMax 以下であること、前回読み込んだ値と同じではないことを確認。
 - 3. ServoMotor1を PCA9685 で使用する値(Duty 比)に変換。
 - 4. PWM0 に接続しているサーボモータに値を入力。
 - 2) InPort:ServoMotor2 に値があるか確認ある場合は以下の処理をする。
 - 1. ServoMotor2の値を読み込む。
 - 2. ServoMotor2の値が ServoMotor2AngleMin 以上 ServoMotor2AngleMax 以下であること、前回読み込んだ値と同じではないことを確認。
 - 3. ServoMotor2をPCA9685で使用する値(Duty比)に変換。
 - 4. PWM1 に接続しているサーボモータに値を入力。
 - 3) InPort:ServoMotor3 に値があるか確認ある場合は以下の処理をする。
 - 1. ServoMotor3の値を読み込む。
 - 2. ServoMotor3の値が ServoMotor3AngleMin 以上 ServoMotor3AngleMax 以下であること、前回読み込んだ値と同じではないことを確認。
 - 3. ServoMotor3 を PCA9685 で使用する値(Duty 比)に変換する。
 - 4. PWM2 に接続しているサーボモータに値を入力。

3.1.4. onDeactive

なし

3.1.5. onError

1) エラー箇所を番号で表示。

エラーの番号と内容

番号	場所	内容		
0	onInitialize	sumBus の初期宣言かサーボモータの値の初期値でエラー		
1	onActivate	PCA9685を使用するための初期設定でエラー		
2	onExecute	ServoMotor1の値を読み込みの処理でエラー		
3	onExecute	サーボモータ1の値の入力時にエラー		
4	onExecute	ServoMotor2の値を読み込みの処理でエラー		
5	onExecute	サーボモータ2の値の入力時にエラー		

		-
6	onExecute	ServoMotor3の値を読み込みの処理でエラー
7	onExecute	サーボモータ3の値の入力時にエラー

著作権

本文書の著作権は公立大学法人会津大学に帰属します。

この文書のライセンスは以下のとおりです。

<u>クリエイティブ・コモンズ表示2.1日本</u>

Creative Commons - 表示 2.1 日本 - CC BY 2.1 JP

