
3D Point Cloud Map
Generation with Choreonoid

AY2021

Isuru Jayarathne

Setting up Choreonoid environment

● System requirements
○ Ubuntu 20.04

● Clone the latest version of Choreonoid from GIT repository
○ git clone https://github.com/choreonoid/choreonoid.git

● Execute following commands to build the code and install
○ cd choreonoid
○ misc/script/install-requisites-ubuntu-20.04.sh
○ mkdir build
○ cd build
○ cmake ..
○ make
○ sudo make install

2

Creating a Choreonoid project

● Create a folder (aizu_wheel_mapping) in the “ext”
folder in Choreonoid source folder.

● Create two folders named “models” and “src” in the
created folder.

● Copy “CMakeLists.txt” file from “ext” folder to the
project folder (aizu_wheel_mapping)

● Create two folders named “kinect” and “vlp” to save
point cloud data from kinect camera and LiDAR sensor.

● Folder structure can be seen in the figure.
● Complete project can be found here

https://github.com/ijmax/Choreonoid_mapping

Choreonoid
|-- ext
| |-- aizu_wheel_mapping
| | | -- src
| | | |-- CMakeLists.txt
| | | |-- *.cpp
| | |-- models
| | | |-- AizuWheel
| | | |-- Labo1
| | |-- kinect
| | |-- vlp
| | |-- CMakeLists.txt
| |-- CMakeLists.txt

Folder structure

3

https://github.com/ijmax/Choreonoid_mapping

Customizing existing robot model
● Copy the folder “AizuWheel” from following location into the “models”

folder
○ /usr/local/share/choreonoid-1.8/model/

● Edit “AizuWheel.body” file by replacing “JACO2.body” with “box.body” in line
136

● Change the translation values into [0.25, 0, 0.16] in line 139

Default model Modified model 4

Creating a object with depth sensors
● Goto the “AizuWheel” folder and create new file named

“box.body”
● Adding a Kinect camera

○ Type is “Camera” and format is “COLOR_DEPTH”
○ Outputs x,y,z coordinates and R,G,B values of a point
○ Resolution can be changed by fieldOfView value, width, and height

● Adding LiDAR sensor
○ Type is “RangeSensor”
○ Horizontal point resolution can be changed by “yawRange”, and

“yawStep”
○ Vertical point resolution can be changed by “pitchRange” and

“pitchStep”
● Other necessary parameters can be seen in the code

snippet
○ Complete code can be found here

https://github.com/ijmax/Choreonoid_mapping/blob/main/models/AizuWheel/box.body

type: Camera
 name: Kinect
 translation: [0.0, -0.10, 0.10]
 rotation: [[1, 0, 0, 90], [0, 1, 0, 180]]
 format: COLOR_DEPTH
 fieldOfView: 62
 width: 320
 height: 240
 frameRate: 30
 on: true

type: RangeSensor
 name: VLP-16
 translation: [0, 0, 0.1]
 rotation: [[1, 0, 0, 90], [0, 1, 0, -90]]
 yawRange: 360.0
 yawStep: 0.4
 pitchRange: 30.0
 pitchStep: 2.0
 scanRate: 5
 maxDistance: 100.0
 on: true

5

https://github.com/ijmax/Choreonoid_mapping/blob/main/models/AizuWheel/box.body

Creating a Choreonoid project
● Open Choreonoid and save the project (File -> Save Project) in created

project folder (aizu_wheel_mapping).
● Create a “World” by selecting File -> New -> World
● Load “AizuWheel.body” in the project folder by selecting File -> Load ->

Body
● Also, load “Labo1.body” from the Choreonoid installation folder

(/usr/local/share/choreonoid-1.8/model/Labo1)
● Create an “AISTSimulator” under the “World” object by selecting File -> New

-> AISTSimulator
● Create a “GLVisionSimulator” under the AISTSimulator by selecting File ->

New -> GLVisionSimulator
● Change the value of “Record vision data” of “GLVisionSimulator” to true in

the properties
6

Creating a Choreonoid project (Cont.)
● Create a “SensorVisualizer” under the “AizuWheel” item by selecting File ->

New -> SensorVisualizer
● Check the sensor(s) under the “SensorVisualizer” that need to be appeared

in the scene view.
● After starting the simulator, point cloud created by sensor can be seen as

white dots.

Items tree Scene view
7

Creating a controller for move the robot

● Create a file named “wheel_controller.cpp” in the
“src” folder.

● Add following code which follows the code format in
the Tank tutorial
(https://choreonoid.org/en/manuals/latest/simulation/tan
k-tutorial/step4.html)

● The robot can be controlled using the virtual joystick
(I,J,K,L buttons).

● Complete code can be found here
https://github.com/ijmax/Choreonoid_mapping/blob/main/src/wheel_controller.cpp

class AW_Controller : public SimpleController
{
 Link* trackL;
 Link* trackR;
 Joystick joystick;

public:
 virtual bool initialize(SimpleControllerIO* io) override
 {
 trackL = io->body()->link("L_WHEEL");
 trackR = io->body()->link("R_WHEEL");

 io->enableOutput(trackL, JointVelocity);
 io->enableOutput(trackR, JointVelocity);

 return true;
 }

 virtual bool control() override
 {
 static const int axisID[] = { 2, 3 };

 joystick.readCurrentState();

 double pos[2];
 for(int i=0; i < 2; ++i){
 pos[i] = joystick.getPosition(axisID[i]);
 if(fabs(pos[i]) < 0.2){
 pos[i] = 0.0;
 }
 }

 double k = 2.0;
 trackL->dq_target() = k * (-2.0 * pos[1] + pos[0]);
 trackR->dq_target() = k * (-2.0 * pos[1] - pos[0]);

 return true;
 }
}; 8

https://choreonoid.org/en/manuals/latest/simulation/tank-tutorial/step4.html
https://choreonoid.org/en/manuals/latest/simulation/tank-tutorial/step4.html
https://github.com/ijmax/Choreonoid_mapping/blob/main/src/wheel_controller.cpp

Creating a controller to save point clouds
● Create a file named “kinect_data_recoder.cpp” in

the “src” folder.
● PCD files were saved after transforming them

using following code.
● A PCD file was saved in the given folder after each

button (B) click of the virtual joystick.
● PCL library is required to be installed to compile

this controller.
● Make sure PCL library has been installed before

compilation.
● Complete code can be found here

https://github.com/ijmax/Choreonoid_mapping/blob/main/src/kinect_data_recorder.cpp

void savePCD()
 {
 const Image& imgData = knt->constImage();
 const unsigned char* pixels = imgData.pixels();

 const int width = imgData.width();
 const int height = imgData.height();

 pcl::PointCloud<pcl::PointXYZRGB> cloud;
 cloud.width = width;
 cloud.height = height;
 cloud.is_dense = false;
 cloud.points.resize(cloud.width * cloud.height);

 size_t i = 0;
 size_t ci = 0;
 for(const auto& e: knt->constPoints()) {
 if (e[1]<2 and e[1]>-0.5)
 {
 cloud[i].x = e(0);
 cloud[i].y = e(1);
 cloud[i].z = e(2);
 cloud[i].r = pixels[3*ci + 0];
 cloud[i].g = pixels[3*ci + 1];
 cloud[i].b = pixels[3*ci + 2];
 ++i;
 }
 ++ci;
 }

 Eigen::Affine3f transform = Eigen::Affine3f::Identity();

 Position pos = ioBody->rootLink()->position();
 const Vector3 t = -pos.translation();
 Vector3 r = rpyFromRot(pos.rotation());
 transform.translation() << t.y(), t.z(), t.x();
 transform.rotate (Eigen::AngleAxisf (r[2],
Eigen::Vector3f::UnitY()));

 pcl::PointCloud<pcl::PointXYZRGB> transformed_cloud;
 pcl::transformPointCloud (cloud, transformed_cloud, transform);

 pcl::io::savePCDFileBinaryCompressed ("data/cloud" +
to_string(counter) + ".pcd", transformed_cloud);
 (*os) << "Saved a pcd file" << std::endl;
 }

9

https://github.com/ijmax/Choreonoid_mapping/blob/main/src/kinect_data_recorder.cpp

Compiling and adding controllers
● Create a “CMakeLists.txt” in the “src” folder and add the following

code. https://github.com/ijmax/Choreonoid_mapping/blob/main/src/CMakeLists.txt

● Compile the Choreonoid source in order compile controller codes
○ Goto “build” folder in the Choreonoid source folder.
○ Execute “cmake ..” then “make” commands

● Create a “SimpleController” under the “AizuWheel” in the
Choreonoid project and name it as “WheelController”.

● Set the compiled controller in the field “Controller module” in the
properties list.

● Compiled controller module can be found in <Choreonoid
source>/lib/choreonoid-1.8/simplecontroller/AW_wheel_control
ler.so.

● Add another “SimpleController” and name it as “KinectController”.
● Set the “Controller module” as same as previous step

(<Choreonoid
source>/lib/choreonoid-1.8/simplecontroller/kinect_data_recor
der)

find_package(PCL REQUIRED common io
surface features)

include_directories(${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARY_DIRS})
add_definitions(${PCL_DEFINITIONS})

add_cnoid_simple_controller(AW_wheel_contr
oller wheel_controller.cpp)
add_cnoid_simple_controller(kinect_data_reco
rder kinect_data_recoder.cpp)

target_link_libraries (kinect_data_recorder
${PCL_COMMON_LIBRARIES}
${PCL_SURFACE_LIBRARIES}
${PCL_FEATURES_LIBRARIES} pcl_io)

10

https://github.com/ijmax/Choreonoid_mapping/blob/main/src/CMakeLists.txt

Simulation videos

 AizuWheel in the Labo1 AizuWheel in the LiCTIA 1st floor
11

https://youtu.be/8Tm5zDrTcZQ https://youtu.be/PPZtnmvpuEA

https://docs.google.com/file/d/1sp30VzODfA6vXuNj1cxeiw1N1ZxCyEDj/preview
https://docs.google.com/file/d/18mI2GGAMyQW-r2_JnlFXoST3_lhEhH60/preview
https://youtu.be/8Tm5zDrTcZQ
https://youtu.be/PPZtnmvpuEA

Merging recorded point clouds

● Python script has been use merge and downsample
the recorded point clouds.

● Install necessary libraries using “pip” command.
● Pip install open3d
● Execute python file by passing point clouds folder

path as a console parameter.
● Merged point could is generated in the same folder

as python script is in.
● Downsampling factor can be adjusted to change the

resolution of the final point cloud.

import open3d as o3d
import os
import sys
import numpy as np

path = sys.argv[1]
print("path: " + path)

if (path == ""):
path = "."

files = os.listdir(path)

pcd0 = o3d.io.read_point_cloud(path + "/" + files[0])

point_array = np.asarray(pcd0.points)
color_array = np.asarray(pcd0.colors)

for i in range(len(files)):

if (i>0):
pcd = o3d.io.read_point_cloud(path +

"/" + files[i])
ps = np.asarray(pcd.points)
cs = np.asarray(pcd.colors)
point_array =

np.concatenate((point_array, ps))
color_array =

np.concatenate((color_array, cs))

merged = o3d.geometry.PointCloud()
merged.points = o3d.utility.Vector3dVector(point_array)
merged.colors = o3d.utility.Vector3dVector(color_array)
pcd_down = merged.voxel_down_sample(voxel_size=0.05)
o3d.io.write_point_cloud("merged_cloud.pcd", pcd_down)

12

Merged point cloud

13

