Development of Parallel Tether Control System

Report 2023

Isuru Jayarathne
14/04/2023

Concept

- The main idea of this project is to control a sensor-base attached to a drone using tethers.
- Six tethers are employed to control the angle and elevation of the sensor-base.
- Each control module comprises a motor, an encoder, and a processing board.

Specifications of a single reel

- Dynamixel (XL430-W250-T) powered reel with max torque 1.4Nm
- Open CR processing board
- Input voltage: 12 V
- Communication interface: UART
- Bobbin radius: 25 mm
- Bobbin length: 70 mm
- Module dimensions:
- Width: 180 mm
- Length: 190 mm
- Height: 100 mm

3D Assembly of single reel in Blender

- 3D printable parts were designed using FreeCAD software.

Complete assembly

- All modules were connected to the PC using USB hub and can be controlled individually.

Control interface

Parallel Tether Controller Interface

- This program scans all connected serial ports and assigns reel ID hard coded in the processing board.
- Six modules (reels) can be controlled individually and all together from the GUI.

Al

\square Reel 1	Port (COM5)	Torque: On	Verified
∇ Reel 2	Port (COM21)	Torque: On	Verified
∇ Reel 3	Port (COM22)	Torque: On	Verified
\square Reel 4	Port (COM28)	Torque: On	Verified
\square Reel 5	Port (COM27)	Torque: On	Verified
\square Reel 6	Port (COM26)	Torque: On	Verified

Vertical movement test

- Developed system was tested for vertical movements first

Results for vertical movement

- Vertical movement was tested for 6 test cases ($1000 \mathrm{~mm}, 2000 \mathrm{~mm}, 2600 \mathrm{~mm}$, $2700 \mathrm{~mm}, 2800 \mathrm{~mm}, 2900 \mathrm{~m}$).
- Also, the system was test for pushing and pulling the tether.
- Maximum error was around 80 mm for 1000 mm , pulling case.

Horizontal movement test

- Developed system was tested for horizontal movements as well

Results for horizontal movement

- Horizontal movement was tested for 3 test cases ($1000 \mathrm{~mm}, 800 \mathrm{~mm}, 600 \mathrm{~mm}$).
- Also, the system was test for pushing and pulling the tether.
- Maximum error was -60 mm for 800 mm , pushing case.

Thank you.

