Development of Parallel Tether Control System

Report 2023

Isuru Jayarathne 14/04/2023

Concept

- The main idea of this project is to control a sensor-base attached to a drone using tethers.
- Six tethers are employed to control the angle and elevation of the sensor-base.
- Each control module comprises a motor, an encoder, and a processing board.

Sketch of the parallel tether system

Specifications of a single reel

- Dynamixel (XL430-W250-T) powered reel with max torque 1.4Nm
- Open CR processing board
 - Input voltage: 12V
 - Communication interface: UART
- Bobbin radius: 25mm
- Bobbin length: 70mm
- Module dimensions:
 - Width: 180mm
 - Length: 190mm
 - Height: 100mm

3D Assembly of single reel in Blender

• 3D printable parts were designed using FreeCAD software.

Complete assembly

• All modules were connected to the PC using USB hub and can be controlled individually.

Control interface

- This program scans all connected serial ports and assigns reel ID hard coded in the processing board.
- Six modules (reels) can be controlled individually and all together from the GUI.

Parallel Tether Controller Interface

Reel 1	Port (COM5)	Torque: On	Verified
Reel 2	Port (COM21)	Torque: On	Verified
Reel 3	Port (COM22)	Torque: On	Verified
🖌 Reel 4	Port (COM28)	Torque: On	Verified
Reel 5	Port (COM27)	Torque: On	Verified
🗹 Reel 6	Port (COM26)	Torque : On	Verified
/alue		0	
2000		•	20
-			

Figure 4: Control interface (web based)

Vertical movement test

• Developed system was tested for vertical movements first

Results for vertical movement

- Vertical movement was tested for 6 test cases (1000mm, 2000mm, 2600mm, 2700mm, 2800mm, 2900m).
- Also, the system was test for pushing and pulling the tether.
- Maximum error was around 80mm for 1000mm, pulling case.

Vertical movement accuracy (pull)

Vertical movement accuracy (push)

Horizontal movement test

• Developed system was tested for horizontal movements as well

Results for horizontal movement

- Horizontal movement was tested for 3 test cases (1000mm, 800mm, 600mm).
- Also, the system was test for pushing and pulling the tether.
- Maximum error was -60mm for 800mm, pushing case.

Thank you.