



# 環境情報とロボットの情報共有の仕組みを

# 実機環境構築・実行手順書

Ver1.0.0

発行日 2024 年 03 月 31 日 公立大学法人会津大学 株式会社 FSK

# 1 目次

| 2 | 使用機   | 材4                                     |
|---|-------|----------------------------------------|
| 3 | 使用し   | た環境4                                   |
| 4 | 環境作   | 成手順5                                   |
|   | 4.1 ゲ | ストOSの環境設定5                             |
|   | 4.1.1 | ROS のインストール                            |
|   | 4.1.2 | ゲスト OS に RealSense の SDK をインストール5      |
|   | 4.1.3 | ゲスト OS に RealSense の ROS パッケージをインストール5 |
|   | 4.1.4 | ゲスト OS にプログラムを配置5                      |
|   | 4.1.5 | ゲスト OS にカメラの位置設定ファイルを配置5               |
|   | 4.2 タ | ートルボット3側の環境設定6                         |
|   | 4.3 配 | 送ロボットのプログラムを更新6                        |
| 5 | 連携し   | た Launch ファイルの起動方法7                    |
|   | 5.1 タ | ートルボット3でロボット制御関連ノードを起動7                |
|   | 5.1.1 | ロボット制御ノードを起動7                          |
|   | 5.1.2 | Velodyne ドライバノードを起動7                   |
|   | 5.1.3 | move_base ノードを起動7                      |
|   | 5.2 ゲ | スト OS で RealSense 関連ノードを起動7            |
|   | 5.2.1 | RealSense のノードを起動7                     |
|   | 5.2.2 | ロボット位置推定ノードを起動8                        |
|   | 5.2.3 | カメラの位置・姿勢を rostopic pub を使いパブリッシュ8     |
|   | 5.2.4 | ロボット管理マネージャを起動8                        |
|   | 5.2.5 | 状態表示(rviz)ノードを起動8                      |
|   | 5.3 タ | ートルボット3で地図関連ノードを起動8                    |
|   | 5.3.1 | 地図更新ノードを起動8                            |
|   | 5.3.2 | ロボット制御統括ノードを起動8                        |
|   | 5.3.3 | 経路コストマップ配信ノードを起動9                      |
|   | 5.3.4 | 移動指示用ノードを起動9                           |

## 2 使用機材

- RealSense D435
- ・ タートルボット3

# 3 使用した環境

- ホスト OS: Windows 10
- VMware Workstation Player: 16
- ゲスト OS: Ubuntu 20.04 LTS
- ROS : Noetic Ninjemys

### 4 環境作成手順

#### 4.1 ゲストOSの環境設定

4.1.1 ROS のインストール

Choreonoid の公式 HP の ROS との連携「ROS のインストール」に従い、ROS の環境構築を行います。

https://choreonoid.org/ja/documents/latest/ros/index.html

#### 4.1.2 ゲスト OS に RealSense の SDK をインストール

公式サイトに掲載されている以下のページを参考に、ゲスト OS の Ubuntu に RealSense の SDK をインストールします。

https://github.com/IntelRealSense/librealsense/blob/master/doc/distribution\_linux.md#installing-the-packages

#### 4.1.3 ゲスト OS に RealSense の ROS パッケージをインストール

公式サイトに掲載されている以下のページを参考に、ゲスト OS の Ubuntu に RealSense 関連の ROS パッケージをインストールします。

https://github.com/IntelRealSense/realsense-ros/tree/ros1-legacy

#### 4.1.4 ゲスト OS にプログラムを配置

"robotmanager.zip"と"robotrecognize.zip"を解凍し、"~/catkin\_ws/src/"直下に配置しビルドします。

\$ cd ~/ダウンロード

\$ unzip robotmanager.zip obotrecognize.zip

\$ mv robotmanager robotrecognize ~/catkin\_ws/sr

- \$ cd ~/catkin\_ws/src
- \$ catkin build

4.1.5 ゲスト OS にカメラの位置設定ファイルを配置 "camerapose.yaml"をホームディレクトリ"直下に配置します。

\$ cd ~/ダウンロード

環境情報とロボットの情報共有の仕組みを実機環境構築・実行手順書

#### \$ mv camerapose.yaml ~/catkin\_ws/sr

### 4.2 タートルボット3側の環境設定

### 4.3 配送ロボットのプログラムを更新

以下のファイルをコピーしてビルドします。

【対象ファイル】

- delivery\_robot\_node.cpp
- \$ cd ~/catkin\_ws/src/delivery\_robot/src
- \$ cp -p delivery\_robot\_node.cpp delivery\_robot\_node.cpp.bakyyyyMMdd
- \$ mv ~/Downloads/delivery\_robot/src/ delivery\_robot\_node.cpp ./
- \$ cd ~/catkin\_ws/src
- \$ catkin build

### 5 連携した Launch ファイルの起動方法

5.1 タートルボット3でロボット制御関連ノードを起動

ノードごとにターミナルを起動し、以下のノードを起動してください。

5.1.1 ロボット制御ノードを起動

\$ export ROS\_HOSTNAME=10.24.12.223

\$ export ROS\_MASTER\_URI=http://10.24.12.223:11311

- \$ roslaunch turtlebot3\_bringup turtlebot3\_robot.launch
- 5.1.2 Velodyne ドライバノードを起動
- \$ export ROS\_HOSTNAME=10.24.12.223

\$ export ROS\_MASTER\_URI=http://10.24.12.223:11311

- \$ roslaunch velodyne\_pointcloud VLP16\_points.launch
- 5.1.3 move base ノードを起動
- \$ export ROS\_HOSTNAME=10.24.12.223
- \$ export ROS\_MASTER\_URI=http://10.24.12.223:11311
- \$ roslaunch turtlebot3\_navigation turtlebot3\_navigation\_L.launch

#### 5.2 ゲスト OS で RealSense 関連ノードを起動

ゲスト OS でノードを実行する前に以下のコマンドで ip アドレスを確認。

#### \$ipa

ゲスト OS でノードを実行するとき、「export ROS\_HOSTNAME=xx.xx.xx.xx」の xx.xx.xxx を上記コマンドで確認した ip アドレスに変更する

5.2.1 RealSense のノードを起動

\$ export ROS\_HOSTNAME=xx.xx.xx.xx

\$ export ROS\_MASTER\_URI=http://10.24.12.223:11311

\$ roslaunch realsense2\_camera rs\_rgbd.launch
enable\_pointcloud:=truedepth\_registered\_processing:=true align\_depth:=true

環境情報とロボットの情報共有の仕組みを実機環境構築・実行手順書

5.2.2 ロボット位置推定ノードを起動

\$ export ROS\_HOSTNAME=xx.xx.xx.xx

\$ export ROS\_MASTER\_URI=http://10.24.12.223:11311

\$ roslaunch robotrecognize robotrecognizejiki.launch

5.2.3 カメラの位置・姿勢を rostopic pub を使いパブリッシュ

\$ export ROS\_HOSTNAME=xx.xx.xx.xx

\$ export ROS\_MASTER\_URI=http://10.24.12.223:11311
\$ rostopic pub -r 100 /camerapose geometry\_msgs/Pose -f camerapose.yaml

5.2.4 ロボット管理マネージャを起動

\$ export ROS\_HOSTNAME=xx.xx.xx.xx

\$ export ROS\_MASTER\_URI=http://10.24.12.223:11311

\$ roslaunch robotmanager robotmanager.launch

5.2.5 状態表示 (rviz) ノードを起動

\$ export ROS\_HOSTNAME=xx.xx.xx.xx

\$ export ROS\_MASTER\_URI=http://10.24.12.223:11311

\$ rosrun rviz rviz -d `rospack find turtlebot3\_navigation`/rviz/turtlebot3\_navigation.rviz

5.3 タートルボット3で地図関連ノードを起動

5.3.1 地図更新ノードを起動

\$ export ROS\_HOSTNAME=10.24.12.223

\$ export ROS\_MASTER\_URI=http://10.24.12.223:11311

\$ roslaunch map\_controller map\_organizer\_tb3\_01.launch

5.3.2 ロボット制御統括ノードを起動

\$ export ROS\_HOSTNAME=10.24.12.223

\$ export ROS\_MASTER\_URI=http://10.24.12.223:11311

\$ roslaunch delivery\_robot delivery\_manager\_tb3\_01\_L.launch

環境情報とロボットの情報共有の仕組みを実機環境構築・実行手順書

5.3.3 経路コストマップ配信ノードを起動 \$ export ROS HOSTNAME=10.24.12.223

\$ export ROS\_MASTER\_URI=http://10.24.12.223:11311

\$ ROS\_NAMESPACE=tb3\_01 roslaunch
turtlebot3\_navigationmap\_server\_costmap\_L.launch

5.3.4 移動指示用ノードを起動

\$ export ROS\_HOSTNAME=10.24.12.223

\$ export ROS\_MASTER\_URI=http://10.24.12.223:11311

\$ rosrun delivery\_robot edge\_node\_beta tb3\_01 tb3 155

### 4. 著作権

本文書の著作権は公立大学法人会津大学に帰属します。 この文書のライセンスは以下のとおりです。 <u>クリエイティブ・コモンズ表示2.1日本</u> Creative Commons — 表示 2.1 日本 — CC BY 2.1 JP

