

ユーザーズマニュアル 実空間可視化システム

発行日 2025 年 3 月 31 日 公立大学法人会津大学

株式会社東日本計算センター

目 次

1. はじめに	1
1.1. 実空間可視化システムとは	1
1.2. 動作環境	2
1.3. 前提事項/注意事項	3
1.4. 関連資料	3
2. 動作手順	4
2.1. ディレクトリ構成	4
2.2. ロケーション、モデル設定	5
2.3. MQTT サーバー接続設定	7
2.4. Choreonoid 起動	8
2.5. スクリプトの読み込み	8
2.6. スクリプトの実行(セッティング)	9
2.7. スクリプトの実行(実行)	11
2.8. スクリプトの終了	12
2.9. スクリプトの再実行	12
2.1 0. Choreonoid 終了	13
3. エラーメッセージ	14
4. 注意事項	14

1.はじめに

1.1.実空間可視化システムとは

実空間可視化システム(Real Space Visualization System)は、外部カメラから取得した キャプチャを基に、動的な対象(人、ロボット、台車など)および準静的な物体(机、椅 子など)の位置情報を推定したデータを仮想空間(Choreonoid などのロボットシミュレ ータ)のモデルデータに反映させ、リアルタイムで更新するシステムです(図 1-1)。

本書はこの「実空間可視化システム」のユーザーマニュアルです。上記は会津大学 産 学連携ロボット研究開発支援事業の一環として開発したものです。

図 1-1 実空間可視化システム構成一例

1.2.動作環境

動作環境一覧を表 1-1 に示します。

	環境	バージョン	補足
OS	Ubuntu	20.04 LTS	-
CPU	Intel(R) Core(TM) i7-	-	-
	10510U CPU @ 1.80GHz		
	2.30 GHz		
GPU	-	-	-
メモリ	16GB 以上	-	-
ストレージ	512GB以上	-	-
(SSD)			
開発言語	Python	3.8 系	-
ミドルウェア	Choreonoid	c6d0afc6f0dc677cb7324	コミットID
		88bd983e9efd004bca2	
	ROS	Noetic	-
依存ライブラリ	paho-mqtt	1.6.1	MQTT Python クライアン
			F
	requests	2.22.0	HTTP 向け Python ラ
			イブラリ
	numpy	1.22.4	数学関数ライブラリ
	numpy-quaternion	2023.0.2	クォータニオン用ライブ
			ラリ

表 1-1 動作環境一覧

1.3.前提事項/注意事項

導入にあたっての前提ならびに注意事項を表 1-2 に示します。

表 1-2 前提ならびに注意事項

前提事項	(1) インストールマニュアル_実空間可視化シス
	テムに沿って、動作環境構築済みであること
	(2) MQTT Broker が起動していること
	(3) 物体認識システムが起動していること
	(4) RDR 上の RDBS が起動していること
注意事項	無し

1.4. 関連資料

関連資料を表1-3に示します。

表 1-3 関連資料

No	資料名	備考
1	インストールマニュアル_実空間可視化システム	-

2. 動作手順

2.1. ディレクトリ構成

Real_Space_Visualization_System のディレクトリ構成を図 2-1 に示します。

Real_Space_Visualization_System	 ルートディレクトリ
⊢ tls	 SSL サーバ証明書格納ディレクトリ
∣	 認証局の証明書
	 クライアント証明書の秘密鍵
│ └ client.crt	 クライアント証明書
├ cnoid_item_base_list.yaml	 モデルデータ配置用基準ファイル
├ create_yaml.py	 YAML ファイル作成処理クラス
⊢ mqtt_interface.py	 MQTT 通信処理クラス
⊢ object_setting.py	 物体表示事前設定クラス
├ object_viewer.py	 物体表示メインクラス
⊢ object_viewer_controller.py	 物体表示操作クラス
⊢ rearrangement_obstacles.py	 モデルデータ配置処理クラス
⊢ socket_server.py	 ソケット通信処理クラス
⊢ location_conf.json	 ロケーション、モデル設定ファイル
└ mqtt_conf.json	 MQTT サーバー接続設定ファイル

図 2-1 ディレクトリ構成

2.2. ロケーション、モデル設定

ロケーション、モデル設定ファイル仕様として、ファイル形式は JSON、改行コード: LF、文字コードは UTF-8 とします。パラメータを表 2-1、記述例を図 2-2 に示します。

Ĩ	項目	型	説明
loca	ation	string	ロケーション名を指定("lictia_1f" of "nagato_ic")
fiel	d_body	dict	フィールドの body 設定項目
	name	string	body 名
	translation	array	配置する座標[x, y, z]
	rotation	string	配置する姿勢(オイラー角) [x, y, z]
	url	string	body ファイルの格納パス
sta	tic_bodys	array	静的物体の body 設定項目
	name	string	body 名
	translation	string	配置する座標[x, y, z]
	rotation	string	配置する姿勢(オイラー角) [x, y, z]
	url	string	body ファイルの格納パス
sen	ni_static_bodys	array	準静的物体の body 設定項目
	name	string	body 名
	height	double	物体の高さ
	url	string	body ファイルの格納パス
obs	stacle_bodys	array	動的物体の body 設定項目
	name	string	body 名
	height	double	物体の高さ
	url	string	body ファイルの格納パス

表 2-1 ロケーション、モデル設定ファイル仕様

```
"location": "lictia_1f",
  "field_body": {
    "name": "LICTiA1F",
    "translation": [8.997, -1.691, -0.05],
    "rotation": [0, 0, 90],
    "url": "${SHARE}/LICTiA/model/LICTiA1F.body" },
   "static_bodys": [
    { "name": "DigitalSignage_47v",
      "translation": [0.6695,1.248, 0.952],
      "rotation": [0, 0, 180],
      "url": "${SHARE}/LICTiA/model/DigitalSignage 47v.body"}],
  "semi_static_bodys": [
    { "name": "table",
      "height": 0.7,
      "url": "${SHARE}/LICTiA/model/Table-120x120.body"},
    { "name": "chair",
      "height": 0.4,
      "url": "${SHARE}/LICTiA/model/Office_chair.body"}],
  "obstacle bodys": [
    { "name": "person",
      "height": 0.6,
      "url": "${SHARE}/LICTiA/model/Person.body"},
    { "name": "megarover",
      "height": 0.05,
      "url":
"${SHARE}/cnoid_turtlebot_bringup/model/Waffle_pi_LiDAR_2d.body"},
    { "name": "trolley",
      "height": 0.2,
      "url": "${SHARE}/LICTiA/model/Trolley.body"}]
}
```

図 2-2 ロケーション、モデル設定ファイル記述例

2.3. MQTT サーバー接続設定

MQTT サーバー接続設定ファイル仕様として、ファイル形式は JSON、改行コード: LF、 文字コードは UTF-8 とします。パラメータを表 2-2、記述例を図 2-3 に示します。

項目	型	説明
host	string	ホスト名(もしくは IP アドレス)を指定
port	integer	ポート番号を半角数字で指定
ca_certs	string	CA 認証局ファイルのパスを指定
certfile	string	クライアント証明書のパスを指定
keyfile	string	クライアント秘密鍵のパスを指定

表 2-2 MQTT サーバー接続設定ファイル仕様

{	
	"host": "localhost",
	"port": 8080,
	"ca_certs": "./tls/ca.crt",
	"certfile": "./tls/clt.crt",
	"keyfile": "./tls/clt.key"
}	

図 2-3 MQTT サーバー接続設定ファイル記述例

- 2.4. Choreonoid 起動
 - (1) 1つ目のターミナルで ROS マスターを起動します。

\$ roscore

(2) 2 つ目のターミナルで Real_Space_Visualization_System のディレクトリに移動したのち Choreonoid を起動します。

\$ cd ***/***/Real_Space_Visualization_System

\$ rosrun choreonoid_ros choreonoid

- 2.5. スクリプトの読み込み
 - Choreonoid 画面のファイル→読み込み→Python スクリプトを選択し、 object_viewer.pyを読み込んでください。
 - (2) 読み込まれたスクリプトはアイテムに表示されます。

新規	•	0.000
読み込み		サブプロジェクト
選択アイテムの再読み込み		シーン
選択アイテムの保存		複数ポイントセット
選択アイテムに名前を付けて保存		ボディ
インポート	×	マテリアルテーブル
選択アイテムのエクスポート		ボディモーション
プロジェクトを開く		ワールドログ
プロジェクトの保存		干渉データ
プロジェクトに名前を付けて保存		Pythonスクリプト
プロジェクトファイルオプション		シミュレーション用Pythonスクリプト

図 2-4 スクリプト読み込み

	Pythonスクリプトの読み込み 🛛 🛛 😣
アドレス: 🛑 /hon	ne/robot-db/Pycization_system_2nd 🔹 🖇 🔺 🔳 💷 🗉
💻 コンピュータ	pycache
iobot-db	iog log
choreonoid-2.0	tls 🖉
Real_space_visualiz	🕐 create_yaml.py
	mqtt_interface.py
	🕐 object setting.py
	object_viewer_controller.py
	🕐 object_viewer.py
	rearrangement_obstacles.py
	socket_server.py
ファイル名(<u>N</u>): "object_	_setting.py" "object_viewer.py" 🛛 🛢 読み込み
ファイルの種類: Pvthon	スクリプト (*.pv) ▼ × × × × × × × × × × × × × × × × × ×

図 2-5 スクリプト読み込み

- 2.6.スクリプトの実行(セッティング)
 - 読み込んだ object_setting.py スクリプトを選択し、右クリックから実行を押下して下さい。

アイテム		
object_set object_vie	実行	
	停止	
	切り取り	
	コピー(単独)	
	コピー(サブツリー)	
	貼り付け	

図 2-6 スクリプト実行

(2) スクリプトを実行するとシーンに設定ファイルの field_body と static_bodys に設定 したモデルが表示されます。表示後、視点をお好みの位置に変更して下さい。

図 2-7 スクリプト実行しモデルが出力された状況

- 2.7.スクリプトの実行(実行)
 - (1) 読み込んだ object_viewer.py スクリプトを選択し、右クリックから実行を押下して下さい。

図 2-8 スクリプト実行

(2) スクリプトを実行するとシーンに物体認識システムで認識された物体が表示されます。

2.8.スクリプトの終了

スクリプト実行中は Choreonoid を操作することが出来ません、スクリプトを終了する 場合はコンソールから以下のコマンド実行して下さい。

(1) スクリプトの終了

\$ cd ***/***/Real_Space_Visualization	n_System
<pre>\$ python object_viewer_controller.py</pre>	'stop'

- 2.9.スクリプトの再実行
 - スクリプト終了後、再度 object_viewer.py スクリプトを選択し、実行を行うとスクリ プトが再度実行されます。

アイテム		シーン
object_setting.py		
object_viewer.py	実行	
	停止	
	切り取り	
	コピー(単独)	
	コピー (サブツリー)	
	貼り付け	

図 2-10 スクリプト実行

2.1 0. Choreonoid 終了

スクリプト終了後、Choreonoid 動作中に画面右上の[X]ボタンを押下またはファイル →終了を選択すると"現在のプロジェクトは保存されていません。プロジェクトを閉じる 前に保存しますか?"とポップアップが表示され、「無視」を押下すると終了します。

図 2-11 Choreonoid 終了

					_	ª 🛞
			0	.00 ‡	: 30.00	•
配置						
						ロック
腔標: ×	0.000	÷ Y	0.000	÷ Z	0.000	-
D	0.0	A D	0.0	+ V	0.0	-

図 2-12 Choreonoid 終了

3.エラーメッセージ

エラー発生時のメッセージを以下に示します。

表 3-1 エラーメッセージー覧

No	状態	エラーメッセージ
1	MQTT 接続エラー	Unable to connection for MQTT server.
2	設定ファイル読込エラー	Unable to read setting file.
3	物体更新時エラー	Unable to update

4. 注意事項

表 4-1 注意事項一覧

No	内容
1	スクリプト実行中は画面操作は実行できません、スクリプト操作の終了を実施後に画面
	操作を実施して下さい。
2	スクリプト実行後にモデルデータを削除し、再度スクリプトを実行すると、うまく動作
	しない場合があります。その際は Choreonoid を再起動じ、再度スクリプトを実行して
	下さい。

著作権

本文書の著作権は公立大学法人 会津大学に帰属します。